MTH 310 HW 11 Solutions

April 23, 2016

Homework Problem 1

Prove that if $f(x) \in \mathbb{Z}_{2}[x], f\left(x^{2}\right)=f(x)^{2}$.
Answer. Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$. Then $f(x)^{2}=\left(a_{n} x^{n}+\ldots+a_{1} x+a_{0}\right)^{2}=$ $\left(a_{n}^{2} x^{2 n}+\ldots+a_{1}^{2} x^{2}+a_{0}^{2}\right)+2 \sum_{i<j<n} a_{i} a_{j} x^{i+j}=a_{n}^{2} x^{2 n}+\ldots+a_{1}^{2} x^{2}+a_{0}^{2}=a_{n} x^{2 n}+\ldots+a_{1} x^{2}+a_{0}$ since if $k \in \mathbb{Z}_{2}=\{0,1\}, k^{2}=k$.

Section 6.1, Problem 4

Is the set $J=\left\{\left.\left[\begin{array}{ll}0 & 0 \\ 0 & r\end{array}\right] \right\rvert\, r \in \mathbb{R}\right\}$ an ideal of $M_{2 x 2}(\mathbb{R})$?
Answer. No. Consider the matrix $\mathrm{L}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in J$ and $K=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Then $J K=$ $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right] \notin J$.

1 Section 6.1, Problem 11

List the distinct principal ideals in \mathbb{Z}_{5} and \mathbb{Z}_{9}
Answer. In \mathbb{Z}_{5}, the principal ideals are (0), (1), (2), (3), (4). But all nonzero principal ideals are \mathbb{Z}_{5}. Therefore the distinct principal ideals are (0), (1).
In \mathbb{Z}_{9}, the principal ideals are (0), (1), (2), (3), (4), (5), (6), (7), (8). But 1 is in all of (1), (2), (4), (5), (7), (8). However, $1 \notin(3)$ or (6). We also have $(3)=\{0,3,6\}=(6)$ so the distinct ideals are (0), (1), (3).

