MTH 310 HW 11 Solutions

April 23, 2016

Homework Problem 1

Prove that if $f(x) \in \mathbb{Z}_2[x]$, $f(x^2) = f(x)^2$. **Answer.** Let $f(x) = a_n x^n + \dots + a_1 x + a_0$. Then $f(x)^2 = (a_n x^n + \dots + a_1 x + a_0)^2 = (a_n^2 x^{2n} + \dots + a_1^2 x^2 + a_0^2) + 2 \sum_{i < j < n} a_i a_j x^{i+j} = a_n^2 x^{2n} + \dots + a_1^2 x^2 + a_0^2 = a_n x^{2n} + \dots + a_1 x^2 + a_0$ since if $k \in \mathbb{Z}_2 = \{0, 1\}, k^2 = k$.

Section 6.1, Problem 4

Is the set $J = \{ \begin{bmatrix} 0 & 0 \\ 0 & r \end{bmatrix} | r \in \mathbb{R} \}$ an ideal of $M_{2x2}(\mathbb{R})$? **Answer.** No. Consider the matrix $\mathbf{L} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in J$ and $K = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then $JK = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \notin J$.

1 Section 6.1, Problem 11

List the distinct principal ideals in \mathbb{Z}_5 and \mathbb{Z}_9 **Answer.** In \mathbb{Z}_5 , the principal ideals are (0), (1), (2), (3), (4). But all nonzero principal ideals are \mathbb{Z}_5 . Therefore the distinct principal ideals are (0), (1).

In \mathbb{Z}_9 , the principal ideals are (0), (1), (2), (3), (4), (5), (6), (7), (8). But 1 is in all of (1), (2), (4), (5), (7), (8). However, $1 \notin (3)$ or (6). We also have $(3) = \{0, 3, 6\} = (6)$ so the distinct ideals are (0), (1), (3).